Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Generalization of Reinforcement Learning with Policy-Aware Adversarial Data Augmentation (2106.15587v2)

Published 29 Jun 2021 in cs.LG

Abstract: The generalization gap in reinforcement learning (RL) has been a significant obstacle that prevents the RL agent from learning general skills and adapting to varying environments. Increasing the generalization capacity of the RL systems can significantly improve their performance on real-world working environments. In this work, we propose a novel policy-aware adversarial data augmentation method to augment the standard policy learning method with automatically generated trajectory data. Different from the commonly used observation transformation based data augmentations, our proposed method adversarially generates new trajectory data based on the policy gradient objective and aims to more effectively increase the RL agent's generalization ability with the policy-aware data augmentation. Moreover, we further deploy a mixup step to integrate the original and generated data to enhance the generalization capacity while mitigating the over-deviation of the adversarial data. We conduct experiments on a number of RL tasks to investigate the generalization performance of the proposed method by comparing it with the standard baselines and the state-of-the-art mixreg approach. The results show our method can generalize well with limited training diversity, and achieve the state-of-the-art generalization test performance.

Citations (18)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube