Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Making the most of small Software Engineering datasets with modern machine learning (2106.15209v1)

Published 29 Jun 2021 in cs.SE

Abstract: This paper provides a starting point for Software Engineering (SE) researchers and practitioners faced with the problem of training machine learning models on small datasets. Due to the high costs associated with labeling data, in Software Engineering,there exist many small (< 1 000 samples) and medium-sized (< 100 000 samples) datasets. While deep learning has set the state of the art in many machine learning tasks, it is only recently that it has proven effective on small-sized datasets, primarily thanks to pre-training, a semi-supervised learning technique that leverages abundant unlabelled data alongside scarce labelled data.In this work, we evaluate pre-trained Transformer models on a selection of 13 smaller datasets from the SE literature, covering both,source code and natural language. Our results suggest that pre-trained Transformers are competitive and in some cases superior to previous models, especially for tasks involving natural language; whereas for source code tasks, in particular for very small datasets,traditional machine learning methods often has the edge.In addition, we experiment with several techniques that ought to aid training on small datasets, including active learning, data augmentation, soft labels, self-training and intermediate-task fine-tuning, and issue recommendations on when they are effective. We also release all the data, scripts, and most importantly pre-trained models for the community to reuse on their own datasets.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.