Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Hop-Constrained Metric Embeddings and their Applications (2106.14969v3)

Published 28 Jun 2021 in cs.DS and cs.DM

Abstract: In network design problems, such as compact routing, the goal is to route packets between nodes using the (approximated) shortest paths. A desirable property of these routes is a small number of hops, which makes them more reliable, and reduces the transmission costs. Following the overwhelming success of stochastic tree embeddings for algorithmic design, Haeupler, Hershkowitz, and Zuzic (STOC'21) studied hop-constrained Ramsey-type metric embeddings into trees. Specifically, embedding $f:G(V,E)\rightarrow T$ has Ramsey hop-distortion $(t,M,\beta,h)$ (here $t,\beta,h\ge1$ and $M\subseteq V$) if $\forall u,v\in M$, $d_G{(\beta\cdot h)}(u,v)\le d_T(u,v)\le t\cdot d_G{(h)}(u,v)$. $t$ is called the distortion, $\beta$ is called the hop-stretch, and $d_G{(h)}(u,v)$ denotes the minimum weight of a $u-v$ path with at most $h$ hops. Haeupler {\em et al.} constructed embedding where $M$ contains $1-\epsilon$ fraction of the vertices and $\beta=t=O(\frac{\log2 n}{\epsilon})$. They used their embedding to obtain multiple bicriteria approximation algorithms for hop-constrained network design problems. In this paper, we first improve the Ramsey-type embedding to obtain parameters $t=\beta=\frac{\tilde{O}(\log n)}{\epsilon}$, and generalize it to arbitrary distortion parameter $t$ (in the cost of reducing the size of $M$). This embedding immediately implies polynomial improvements for all the approximation algorithms from Haeupler {\em et al.}. Further, we construct hop-constrained clan embeddings (where each vertex has multiple copies), and use them to construct bicriteria approximation algorithms for the group Steiner tree problem, matching the state of the art of the non constrained version. Finally, we use our embedding results to construct hop constrained distance oracles, distance labeling, and most prominently, the first hop constrained compact routing scheme with provable guarantees.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)