Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Expert Q-learning: Deep Reinforcement Learning with Coarse State Values from Offline Expert Examples (2106.14642v5)

Published 28 Jun 2021 in cs.LG and cs.AI

Abstract: In this article, we propose a novel algorithm for deep reinforcement learning named Expert Q-learning. Expert Q-learning is inspired by Dueling Q-learning and aims at incorporating semi-supervised learning into reinforcement learning through splitting Q-values into state values and action advantages. We require that an offline expert assesses the value of a state in a coarse manner using three discrete values. An expert network is designed in addition to the Q-network, which updates each time following the regular offline minibatch update whenever the expert example buffer is not empty. Using the board game Othello, we compare our algorithm with the baseline Q-learning algorithm, which is a combination of Double Q-learning and Dueling Q-learning. Our results show that Expert Q-learning is indeed useful and more resistant to the overestimation bias. The baseline Q-learning algorithm exhibits unstable and suboptimal behavior in non-deterministic settings, whereas Expert Q-learning demonstrates more robust performance with higher scores, illustrating that our algorithm is indeed suitable to integrate state values from expert examples into Q-learning.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.