Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ensembling Shift Detectors: an Extensive Empirical Evaluation (2106.14608v1)

Published 28 Jun 2021 in cs.LG

Abstract: The term dataset shift refers to the situation where the data used to train a machine learning model is different from where the model operates. While several types of shifts naturally occur, existing shift detectors are usually designed to address only a specific type of shift. We propose a simple yet powerful technique to ensemble complementary shift detectors, while tuning the significance level of each detector's statistical test to the dataset. This enables a more robust shift detection, capable of addressing all different types of shift, which is essential in real-life settings where the precise shift type is often unknown. This approach is validated by a large-scale statistically sound benchmark study over various synthetic shifts applied to real-world structured datasets.

Citations (3)

Summary

We haven't generated a summary for this paper yet.