Papers
Topics
Authors
Recent
2000 character limit reached

Over-the-Air Federated Multi-Task Learning

Published 27 Jun 2021 in cs.LG and cs.NI | (2106.14229v4)

Abstract: In this letter, we introduce over-the-air computation into the communication design of federated multi-task learning (FMTL), and propose an over-the-air federated multi-task learning (OA-FMTL) framework, where multiple learning tasks deployed on edge devices share a non-orthogonal fading channel under the coordination of an edge server (ES). Specifically, the model updates for all the tasks are transmitted and superimposed concurrently over a non-orthogonal uplink fading channel, and the model aggregations of all the tasks are reconstructed at the ES through a modified version of the turbo compressed sensing algorithm (Turbo-CS) that overcomes inter-task interference. Both convergence analysis and numerical results show that the OA-FMTL framework can significantly improve the system efficiency in terms of reducing the number of channel uses without causing substantial learning performance degradation.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.