Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Linear-Time Approximation Scheme for k-Means Clustering of Affine Subspaces (2106.14176v1)

Published 27 Jun 2021 in cs.CG and cs.DS

Abstract: In this paper, we present a linear-time approximation scheme for $k$-means clustering of \emph{incomplete} data points in $d$-dimensional Euclidean space. An \emph{incomplete} data point with $\Delta>0$ unspecified entries is represented as an axis-parallel affine subspaces of dimension $\Delta$. The distance between two incomplete data points is defined as the Euclidean distance between two closest points in the axis-parallel affine subspaces corresponding to the data points. We present an algorithm for $k$-means clustering of axis-parallel affine subspaces of dimension $\Delta$ that yields an $(1+\epsilon)$-approximate solution in $O(nd)$ time. The constants hidden behind $O(\cdot)$ depend only on $\Delta, \epsilon$ and $k$. This improves the $O(n2 d)$-time algorithm by Eiben et al.[SODA'21] by a factor of $n$.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)