Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Midpoint Regularization: from High Uncertainty Training to Conservative Classification (2106.13913v1)

Published 26 Jun 2021 in cs.LG, cs.AI, and cs.CV

Abstract: Label Smoothing (LS) improves model generalization through penalizing models from generating overconfident output distributions. For each training sample the LS strategy smooths the one-hot encoded training signal by distributing its distribution mass over the non-ground truth classes. We extend this technique by considering example pairs, coined PLS. PLS first creates midpoint samples by averaging random sample pairs and then learns a smoothing distribution during training for each of these midpoint samples, resulting in midpoints with high uncertainty labels for training. We empirically show that PLS significantly outperforms LS, achieving up to 30% of relative classification error reduction. We also visualize that PLS produces very low winning softmax scores for both in and out of distribution samples.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.