Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Threshold-Based Quantum Optimization (2106.13860v2)

Published 25 Jun 2021 in quant-ph and cs.DS

Abstract: We propose and study Th-QAOA (pronounced Threshold QAOA), a variation of the Quantum Alternating Operator Ansatz (QAOA) that replaces the standard phase separator operator, which encodes the objective function, with a threshold function that returns a value $1$ for solutions with an objective value above the threshold and a $0$ otherwise. We vary the threshold value to arrive at a quantum optimization algorithm. We focus on a combination with the Grover Mixer operator; the resulting GM-Th-QAOA can be viewed as a generalization of Grover's quantum search algorithm and its minimum/maximum finding cousin to approximate optimization. Our main findings include: (i) we provide intuitive arguments and show empirically that the optimum parameter values of GM-Th-QAOA (angles and threshold value) can be found with $O(\log(p) \times \log M)$ iterations of the classical outer loop, where $p$ is the number of QAOA rounds and $M$ is an upper bound on the solution value (often the number of vertices or edges in an input graph), thus eliminating the notorious outer-loop parameter finding issue of other QAOA algorithms; (ii) GM-Th-QAOA can be simulated classically with little effort up to 100 qubits through a set of tricks that cut down memory requirements; (iii) somewhat surprisingly, GM-Th-QAOA outperforms non-thresholded GM-QAOA in terms of approximation ratios achieved. This third result holds across a range of optimization problems (MaxCut, Max k-VertexCover, Max k-DensestSubgraph, MaxBisection) and various experimental design parameters, such as different input edge densities and constraint sizes.

Citations (28)

Summary

We haven't generated a summary for this paper yet.