Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

From Linear Term Rewriting to Graph Rewriting with Preservation of Termination (2106.13826v2)

Published 25 Jun 2021 in cs.LO

Abstract: Encodings of term rewriting systems (TRSs) into graph rewriting systems usually lose global termination, meaning the encodings do not terminate on all graphs. A typical encoding of the terminating TRS rule a(b(x)) -> b(a(x)), for example, may be indefinitely applicable along a cycle of a's and b's. Recently, we introduced PBPO+, a graph rewriting formalism in which rules employ a type graph to specify transformations and control rule applicability. In the present paper, we show that PBPO+ allows for a natural encoding of linear TRS rules that preserves termination globally. This result is a step towards modeling other rewriting formalisms, such as lambda calculus and higher order rewriting, using graph rewriting in a way that preserves properties like termination and confluence. We moreover expect that the encoding can serve as a guide for lifting TRS termination methods to PBPO+ rewriting.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.