Papers
Topics
Authors
Recent
2000 character limit reached

From Linear Term Rewriting to Graph Rewriting with Preservation of Termination (2106.13826v2)

Published 25 Jun 2021 in cs.LO

Abstract: Encodings of term rewriting systems (TRSs) into graph rewriting systems usually lose global termination, meaning the encodings do not terminate on all graphs. A typical encoding of the terminating TRS rule a(b(x)) -> b(a(x)), for example, may be indefinitely applicable along a cycle of a's and b's. Recently, we introduced PBPO+, a graph rewriting formalism in which rules employ a type graph to specify transformations and control rule applicability. In the present paper, we show that PBPO+ allows for a natural encoding of linear TRS rules that preserves termination globally. This result is a step towards modeling other rewriting formalisms, such as lambda calculus and higher order rewriting, using graph rewriting in a way that preserves properties like termination and confluence. We moreover expect that the encoding can serve as a guide for lifting TRS termination methods to PBPO+ rewriting.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.