Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Bayesian Neural Networks: Essentials (2106.13594v1)

Published 22 Jun 2021 in cs.LG and cs.AI

Abstract: Bayesian neural networks utilize probabilistic layers that capture uncertainty over weights and activations, and are trained using Bayesian inference. Since these probabilistic layers are designed to be drop-in replacement of their deterministic counter parts, Bayesian neural networks provide a direct and natural way to extend conventional deep neural networks to support probabilistic deep learning. However, it is nontrivial to understand, design and train Bayesian neural networks due to their complexities. We discuss the essentials of Bayesian neural networks including duality (deep neural networks, probabilistic models), approximate Bayesian inference, Bayesian priors, Bayesian posteriors, and deep variational learning. We use TensorFlow Probability APIs and code examples for illustration. The main problem with Bayesian neural networks is that the architecture of deep neural networks makes it quite redundant, and costly, to account for uncertainty for a large number of successive layers. Hybrid Bayesian neural networks, which use few probabilistic layers judicially positioned in the networks, provide a practical solution.

Citations (12)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)