Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 160 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Edge based stochastic block model statistical inference (2106.13571v1)

Published 25 Jun 2021 in cs.SI

Abstract: Community detection in graphs often relies on ad hoc algorithms with no clear specification about the node partition they define as the best, which leads to uninterpretable communities. Stochastic block models (SBM) offer a framework to rigorously define communities, and to detect them using statistical inference method to distinguish structure from random fluctuations. In this paper, we introduce an alternative definition of SBM based on edge sampling. We derive from this definition a quality function to statistically infer the node partition used to generate a given graph. We then test it on synthetic graphs, and on the zachary karate club network.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.