Semialgebras and Weak Distributive Laws (2106.13489v3)
Abstract: Motivated by recent work on weak distributive laws and their applications to coalgebraic semantics, we investigate the algebraic nature of semialgebras for a monad. These are algebras for the underlying functor of the monad subject to the associativity axiom alone-the unit axiom from the definition of an Eilenberg-Moore algebras is dropped. We prove that if the underlying category has coproducts, then semialgebras for a monad M are in fact the Eilenberg-Moore algebras for a suitable monad structure on the functor id + M , which we call the semifree monad Ms. We also provide concrete algebraic presentations for semialgebras for the maybe monad, the semigroup monad and the finite distribution monad. A second contribution is characterizing the weak distributive laws of the form M T => T M as strong distributive laws Ms T => T Ms subject to an additional condition.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.