Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Prediction of geophysical properties of rocks on rare well data and attributes of seismic waves by machine learning methods on the example of the Achimov formation (2106.13274v2)

Published 24 Jun 2021 in physics.geo-ph and cs.LG

Abstract: Purpose of this research is to forecast the development of sand bodies in productive sediments based on well log data and seismic attributes. The object of the study is the productive intervals of Achimov sedimentary complex in the part of oil field located in Western Siberia. The research shows a technological stack of machine learning algorithms, methods for enriching the source data with synthetic ones and algorithms for creating new features. The result was the model of regression relationship between the values of natural radioactivity of rocks and seismic wave field attributes with an acceptable prediction quality. Acceptable quality of the forecast is confirmed both by model cross validation, and by the data obtained following the results of new well.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)