On Fairness and Interpretability (2106.13271v1)
Abstract: Ethical AI spans a gamut of considerations. Among these, the most popular ones, fairness and interpretability, have remained largely distinct in technical pursuits. We discuss and elucidate the differences between fairness and interpretability across a variety of dimensions. Further, we develop two principles-based frameworks towards developing ethical AI for the future that embrace aspects of both fairness and interpretability. First, interpretability for fairness proposes instantiating interpretability within the realm of fairness to develop a new breed of ethical AI. Second, fairness and interpretability initiates deliberations on bringing the best aspects of both together. We hope that these two frameworks will contribute to intensifying scholarly discussions on new frontiers of ethical AI that brings together fairness and interpretability.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.