Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 188 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 78 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Tensor networks for unsupervised machine learning (2106.12974v2)

Published 24 Jun 2021 in cond-mat.stat-mech, cs.LG, quant-ph, and stat.ML

Abstract: Modeling the joint distribution of high-dimensional data is a central task in unsupervised machine learning. In recent years, many interests have been attracted to developing learning models based on tensor networks, which have the advantages of a principle understanding of the expressive power using entanglement properties, and as a bridge connecting classical computation and quantum computation. Despite the great potential, however, existing tensor network models for unsupervised machine learning only work as a proof of principle, as their performance is much worse than the standard models such as restricted Boltzmann machines and neural networks. In this Letter, we present autoregressive matrix product states (AMPS), a tensor network model combining matrix product states from quantum many-body physics and autoregressive modeling from machine learning. Our model enjoys the exact calculation of normalized probability and unbiased sampling. We demonstrate the performance of our model using two applications, generative modeling on synthetic and real-world data, and reinforcement learning in statistical physics. Using extensive numerical experiments, we show that the proposed model significantly outperforms the existing tensor network models and the restricted Boltzmann machines, and is competitive with state-of-the-art neural network models.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube