Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Online Verification of Deep Neural Networks under Domain Shift or Network Updates (2106.12732v2)

Published 24 Jun 2021 in cs.LG and cs.AI

Abstract: Although neural networks are widely used, it remains challenging to formally verify the safety and robustness of neural networks in real-world applications. Existing methods are designed to verify the network before deployment, which are limited to relatively simple specifications and fixed networks. These methods are not ready to be applied to real-world problems with complex and/or dynamically changing specifications and networks. To effectively handle such problems, verification needs to be performed online when these changes take place. However, it is still challenging to run existing verification algorithms online. Our key insight is that we can leverage the temporal dependencies of these changes to accelerate the verification process. This paper establishes a novel framework for scalable online verification to solve real-world verification problems with dynamically changing specifications and/or networks. We propose three types of acceleration algorithms: Branch Management to reduce repetitive computation, Perturbation Tolerance to tolerate changes, and Incremental Computation to reuse previous results. Experiment results show that our algorithms achieve up to $100\times$ acceleration, and thus show a promising way to extend neural network verification to real-world applications.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.