Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Certifying solution geometry in random CSPs: counts, clusters and balance (2106.12710v1)

Published 24 Jun 2021 in cs.DS, cs.CC, and cs.DM

Abstract: An active topic in the study of random constraint satisfaction problems (CSPs) is the geometry of the space of satisfying or almost satisfying assignments as the function of the density, for which a precise landscape of predictions has been made via statistical physics-based heuristics. In parallel, there has been a recent flurry of work on refuting random constraint satisfaction problems, via nailing refutation thresholds for spectral and semidefinite programming-based algorithms, and also on counting solutions to CSPs. Inspired by this, the starting point for our work is the following question: what does the solution space for a random CSP look like to an efficient algorithm? In pursuit of this inquiry, we focus on the following problems about random Boolean CSPs at the densities where they are unsatisfiable but no refutation algorithm is known. 1. Counts. For every Boolean CSP we give algorithms that with high probability certify a subexponential upper bound on the number of solutions. We also give algorithms to certify a bound on the number of large cuts in a Gaussian-weighted graph, and the number of large independent sets in a random $d$-regular graph. 2. Clusters. For Boolean $3$CSPs we give algorithms that with high probability certify an upper bound on the number of clusters of solutions. 3. Balance. We also give algorithms that with high probability certify that there are no "unbalanced" solutions, i.e., solutions where the fraction of $+1$s deviates significantly from $50\%$. Finally, we also provide hardness evidence suggesting that our algorithms for counting are optimal.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com