Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Handwritten Digit Recognition using Machine and Deep Learning Algorithms (2106.12614v1)

Published 23 Jun 2021 in cs.CV, cs.AI, and cs.LG

Abstract: The reliance of humans over machines has never been so high such that from object classification in photographs to adding sound to silent movies everything can be performed with the help of deep learning and machine learning algorithms. Likewise, Handwritten text recognition is one of the significant areas of research and development with a streaming number of possibilities that could be attained. Handwriting recognition (HWR), also known as Handwritten Text Recognition (HTR), is the ability of a computer to receive and interpret intelligible handwritten input from sources such as paper documents, photographs, touch-screens and other devices [1]. Apparently, in this paper, we have performed handwritten digit recognition with the help of MNIST datasets using Support Vector Machines (SVM), Multi-Layer Perceptron (MLP) and Convolution Neural Network (CNN) models. Our main objective is to compare the accuracy of the models stated above along with their execution time to get the best possible model for digit recognition.

Citations (48)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.