Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

DeepStochLog: Neural Stochastic Logic Programming (2106.12574v1)

Published 23 Jun 2021 in cs.AI and cs.LO

Abstract: Recent advances in neural symbolic learning, such as DeepProbLog, extend probabilistic logic programs with neural predicates. Like graphical models, these probabilistic logic programs define a probability distribution over possible worlds, for which inference is computationally hard. We propose DeepStochLog, an alternative neural symbolic framework based on stochastic definite clause grammars, a type of stochastic logic program, which defines a probability distribution over possible derivations. More specifically, we introduce neural grammar rules into stochastic definite clause grammars to create a framework that can be trained end-to-end. We show that inference and learning in neural stochastic logic programming scale much better than for neural probabilistic logic programs. Furthermore, the experimental evaluation shows that DeepStochLog achieves state-of-the-art results on challenging neural symbolic learning tasks.

Citations (56)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.