Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Learning quantum circuits of some $T$ gates (2106.12524v3)

Published 23 Jun 2021 in quant-ph, cs.IT, and math.IT

Abstract: In this paper, we study the problem of learning an unknown quantum circuit of a certain structure. If the unknown target is an $n$-qubit Clifford circuit, we devise an efficient algorithm to reconstruct its circuit representation by using $O(n2)$ queries to it. For decades, it has been unknown how to handle circuits beyond the Clifford group since the stabilizer formalism cannot be applied in this case. Herein, we study quantum circuits of $T$-depth one on the computational basis. We show that the output state of a $T$-depth one circuit {\textit{of full $T$-rank}} can be represented by a stabilizer pseudomixture with a specific algebraic structure. Using Pauli and Bell measurements on copies of the output states, we can generate a hypothesis circuit that is equivalent to the unknown target circuit on computational basis states as input. If the number of $T$ gates of the target is of the order $O({{\log n}})$, our algorithm requires $O(n2)$ queries to it and produces its equivalent circuit representation on the computational basis in time $O(n3)$. Using further additional $O(4{3n})$ classical computations, we can derive an exact description of the target for arbitrary input states. Our results greatly extend the previously known facts that stabilizer states can be efficiently identified based on the stabilizer formalism.

Citations (25)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.