Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Unsupervised Speech Enhancement using Dynamical Variational Auto-Encoders (2106.12271v3)

Published 23 Jun 2021 in cs.SD, cs.AI, cs.LG, and eess.AS

Abstract: Dynamical variational autoencoders (DVAEs) are a class of deep generative models with latent variables, dedicated to model time series of high-dimensional data. DVAEs can be considered as extensions of the variational autoencoder (VAE) that include temporal dependencies between successive observed and/or latent vectors. Previous work has shown the interest of using DVAEs over the VAE for speech spectrograms modeling. Independently, the VAE has been successfully applied to speech enhancement in noise, in an unsupervised noise-agnostic set-up that requires neither noise samples nor noisy speech samples at training time, but only requires clean speech signals. In this paper, we extend these works to DVAE-based single-channel unsupervised speech enhancement, hence exploiting both speech signals unsupervised representation learning and dynamics modeling. We propose an unsupervised speech enhancement algorithm that combines a DVAE speech prior pre-trained on clean speech signals with a noise model based on nonnegative matrix factorization, and we derive a variational expectation-maximization (VEM) algorithm to perform speech enhancement. The algorithm is presented with the most general DVAE formulation and is then applied with three specific DVAE models to illustrate the versatility of the framework. Experimental results show that the proposed DVAE-based approach outperforms its VAE-based counterpart, as well as several supervised and unsupervised noise-dependent baselines, especially when the noise type is unseen during training.

Citations (49)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.