Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploiting Negative Learning for Implicit Pseudo Label Rectification in Source-Free Domain Adaptive Semantic Segmentation (2106.12123v1)

Published 23 Jun 2021 in cs.CV and cs.AI

Abstract: It is desirable to transfer the knowledge stored in a well-trained source model onto non-annotated target domain in the absence of source data. However, state-of-the-art methods for source free domain adaptation (SFDA) are subject to strict limits: 1) access to internal specifications of source models is a must; and 2) pseudo labels should be clean during self-training, making critical tasks relying on semantic segmentation unreliable. Aiming at these pitfalls, this study develops a domain adaptive solution to semantic segmentation with pseudo label rectification (namely \textit{PR-SFDA}), which operates in two phases: 1) \textit{Confidence-regularized unsupervised learning}: Maximum squares loss applies to regularize the target model to ensure the confidence in prediction; and 2) \textit{Noise-aware pseudo label learning}: Negative learning enables tolerance to noisy pseudo labels in training, meanwhile positive learning achieves fast convergence. Extensive experiments have been performed on domain adaptive semantic segmentation benchmark, \textit{GTA5 $\to$ Cityscapes}. Overall, \textit{PR-SFDA} achieves a performance of 49.0 mIoU, which is very close to that of the state-of-the-art counterparts. Note that the latter demand accesses to the source model's internal specifications, whereas the \textit{PR-SFDA} solution needs none as a sharp contrast.

Citations (11)

Summary

We haven't generated a summary for this paper yet.