Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

LegoFormer: Transformers for Block-by-Block Multi-view 3D Reconstruction (2106.12102v2)

Published 23 Jun 2021 in cs.CV

Abstract: Most modern deep learning-based multi-view 3D reconstruction techniques use RNNs or fusion modules to combine information from multiple images after independently encoding them. These two separate steps have loose connections and do not allow easy information sharing among views. We propose LegoFormer, a transformer model for voxel-based 3D reconstruction that uses the attention layers to share information among views during all computational stages. Moreover, instead of predicting each voxel independently, we propose to parametrize the output with a series of low-rank decomposition factors. This reformulation allows the prediction of an object as a set of independent regular structures then aggregated to obtain the final reconstruction. Experiments conducted on ShapeNet demonstrate the competitive performance of our model with respect to the state of the art while having increased interpretability thanks to the self-attention layers. We also show promising generalization results to real data.

Citations (33)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.