Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
104 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
40 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tracking Instances as Queries (2106.11963v2)

Published 22 Jun 2021 in cs.CV, cs.AI, and cs.MM

Abstract: Recently, query based deep networks catch lots of attention owing to their end-to-end pipeline and competitive results on several fundamental computer vision tasks, such as object detection, semantic segmentation, and instance segmentation. However, how to establish a query based video instance segmentation (VIS) framework with elegant architecture and strong performance remains to be settled. In this paper, we present \textbf{QueryTrack} (i.e., tracking instances as queries), a unified query based VIS framework fully leveraging the intrinsic one-to-one correspondence between instances and queries in QueryInst. The proposed method obtains 52.7 / 52.3 AP on YouTube-VIS-2019 / 2021 datasets, which wins the 2-nd place in the YouTube-VIS Challenge at CVPR 2021 \textbf{with a single online end-to-end model, single scale testing & modest amount of training data}. We also provide QueryTrack-ResNet-50 baseline results on YouTube-VIS-2021 val set as references for the VIS community.

Citations (10)

Summary

We haven't generated a summary for this paper yet.