Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Robust EMRAN-aided Coupled Controller for Autonomous Vehicles (2106.11716v3)

Published 22 Jun 2021 in eess.SY, cs.RO, and cs.SY

Abstract: This paper presents a coupled, neural network-aided longitudinal cruise and lateral path-tracking controller for an autonomous vehicle with model uncertainties and experiencing unknown external disturbances. Using a feedback error learning mechanism, an inverse vehicle dynamics learning scheme utilizing an adaptive Radial Basis Function (RBF) neural network, referred to as the Extended Minimal Resource Allocating Network (EMRAN) is employed. EMRAN uses an extended Kalman filter for online learning and weight updates, and also incorporates a growing/pruning strategy for maintaining a compact network for easier real-time implementation. The online learning algorithm handles the parametric uncertainties and eliminates the effect of unknown disturbances on the road. Combined with a self-regulating learning scheme for improving generalization performance, the proposed EMRAN-aided control architecture aids a basic PID cruise and Stanley path-tracking controllers in a coupled form. Its performance and robustness to various disturbances and uncertainties are compared with the conventional PID and Stanley controllers, along with a comparison with a fuzzy-based PID controller and an active disturbance rejection control (ADRC) scheme. Simulation results are presented for both slow and high speed scenarios. The root mean square (RMS) and maximum tracking errors clearly indicate the effectiveness of the proposed control scheme in achieving better tracking performance in autonomous vehicles under unknown environments.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.