Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Diversity-aware $k$-median : Clustering with fair center representation (2106.11696v2)

Published 22 Jun 2021 in cs.DS

Abstract: We introduce a novel problem for diversity-aware clustering. We assume that the potential cluster centers belong to a set of groups defined by protected attributes, such as ethnicity, gender, etc. We then ask to find a minimum-cost clustering of the data into $k$ clusters so that a specified minimum number of cluster centers are chosen from each group. We thus require that all groups are represented in the clustering solution as cluster centers, according to specified requirements. More precisely, we are given a set of clients $C$, a set of facilities $\pazocal{F}$, a collection $\mathcal{F}={F_1,\dots,F_t}$ of facility groups $F_i \subseteq \pazocal{F}$, budget $k$, and a set of lower-bound thresholds $R={r_1,\dots,r_t}$, one for each group in $\mathcal{F}$. The \emph{diversity-aware $k$-median problem} asks to find a set $S$ of $k$ facilities in $\pazocal{F}$ such that $|S \cap F_i| \geq r_i$, that is, at least $r_i$ centers in $S$ are from group $F_i$, and the $k$-median cost $\sum_{c \in C} \min_{s \in S} d(c,s)$ is minimized. We show that in the general case where the facility groups may overlap, the diversity-aware $k$-median problem is \np-hard, fixed-parameter intractable, and inapproximable to any multiplicative factor. On the other hand, when the facility groups are disjoint, approximation algorithms can be obtained by reduction to the \emph{matroid median} and \emph{red-blue median} problems. Experimentally, we evaluate our approximation methods for the tractable cases, and present a relaxation-based heuristic for the theoretically intractable case, which can provide high-quality and efficient solutions for real-world datasets.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.