Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Creating A New Color Space utilizing PSO and FCM to Perform Skin Detection by using Neural Network and ANFIS (2106.11563v1)

Published 22 Jun 2021 in cs.CV

Abstract: Skin color detection is an essential required step in various applications related to computer vision. These applications will include face detection, finding pornographic images in movies and photos, finding ethnicity, age, diagnosis, and so on. Therefore, proposing a proper skin detection method can provide solution to several problems. In this study, first a new color space is created using FCM and PSO algorithms. Then, skin classification has been performed in the new color space utilizing linear and nonlinear modes. Additionally, it has been done in RGB and LAB color spaces by using ANFIS and neural network. Skin detection in RBG color space has been performed using Mahalanobis distance and Euclidean distance algorithms. In comparison, this method has 18.38% higher accuracy than the most accurate method on the same database. Additionally, this method has achieved 90.05% in equal error rate (1-EER) in testing COMPAQ dataset and 92.93% accuracy in testing Pratheepan dataset, which compared to the previous method on COMPAQ database, 1-EER has increased by %0.87.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.