Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Are the Players in an Interactive Belief Model Meta-certain of the Model Itself? (2106.11500v1)

Published 22 Jun 2021 in cs.GT, cs.AI, and cs.MA

Abstract: In an interactive belief model, are the players "commonly meta-certain" of the model itself? This paper formalizes such implicit "common meta-certainty" assumption. To that end, the paper expands the objects of players' beliefs from events to functions defined on the underlying states. Then, the paper defines a player's belief-generating map: it associates, with each state, whether a player believes each event at that state. The paper formalizes what it means by: "a player is (meta-)certain of her own belief-generating map" or "the players are (meta-)certain of the profile of belief-generating maps (i.e., the model)." The paper shows: a player is (meta-)certain of her own belief-generating map if and only if her beliefs are introspective. The players are commonly (meta-)certain of the model if and only if, for any event which some player i believes at some state, it is common belief at the state that player i believes the event. This paper then asks whether the "common meta-certainty" assumption is needed for an epistemic characterization of game-theoretic solution concepts. The paper shows: if each player is logical and (meta-)certain of her own strategy and belief-generating map, then each player correctly believes her own rationality. Consequently, common belief in rationality alone leads to actions that survive iterated elimination of strictly dominated actions.

Summary

We haven't generated a summary for this paper yet.