Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Strong Convergence of a GBM Based Tamed Integrator for SDEs and an Adaptive Implementation (2106.11425v1)

Published 21 Jun 2021 in math.NA and cs.NA

Abstract: We introduce a tamed exponential time integrator which exploits linear terms in both the drift and diffusion for Stochastic Differential Equations (SDEs) with a one sided globally Lipschitz drift term. Strong convergence of the proposed scheme is proved, exploiting the boundedness of the geometric Brownian motion (GBM) and we establish order 1 convergence for linear diffusion terms. In our implementation we illustrate the efficiency of the proposed scheme compared to existing fixed step methods and utilize it in an adaptive time stepping scheme. Furthermore we extend the method to nonlinear diffusion terms and show it remains competitive. The efficiency of these GBM based approaches are illustrated by considering some well-known SDE models.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.