Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

BiAdam: Fast Adaptive Bilevel Optimization Methods (2106.11396v4)

Published 21 Jun 2021 in math.OC, cs.CV, and cs.LG

Abstract: Bilevel optimization recently has attracted increased interest in machine learning due to its many applications such as hyper-parameter optimization and meta learning. Although many bilevel methods recently have been proposed, these methods do not consider using adaptive learning rates. It is well known that adaptive learning rates can accelerate optimization algorithms. To fill this gap, in the paper, we propose a novel fast adaptive bilevel framework to solve stochastic bilevel optimization problems that the outer problem is possibly nonconvex and the inner problem is strongly convex. Our framework uses unified adaptive matrices including many types of adaptive learning rates, and can flexibly use the momentum and variance reduced techniques. In particular, we provide a useful convergence analysis framework for the bilevel optimization. Specifically, we propose a fast single-loop adaptive bilevel optimization (BiAdam) algorithm, which achieves a sample complexity of $\tilde{O}(\epsilon{-4})$ for finding an $\epsilon$-stationary solution. Meanwhile, we propose an accelerated version of BiAdam algorithm (VR-BiAdam), which reaches the best known sample complexity of $\tilde{O}(\epsilon{-3})$. To the best of our knowledge, we first study the adaptive bilevel optimization methods with adaptive learning rates. Experimental results on data hyper-cleaning and hyper-representation learning tasks demonstrate the efficiency of our algorithms.

Citations (38)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.