Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Multi-Agent Curricula and Emergent Implicit Signaling (2106.11156v3)

Published 21 Jun 2021 in cs.MA, cs.AI, and cs.LG

Abstract: Emergent communication has made strides towards learning communication from scratch, but has focused primarily on protocols that resemble human language. In nature, multi-agent cooperation gives rise to a wide range of communication that varies in structure and complexity. In this work, we recognize the full spectrum of communication that exists in nature and propose studying lower-level communication. Specifically, we study emergent implicit signaling in the context of decentralized multi-agent learning in difficult, sparse reward environments. However, learning to coordinate in such environments is challenging. We propose a curriculum-driven strategy that combines: (i) velocity-based environment shaping, tailored to the skill level of the multi-agent team; and (ii) a behavioral curriculum that helps agents learn successful single-agent behaviors as a precursor to learning multi-agent behaviors. Pursuit-evasion experiments show that our approach learns effective coordination, significantly outperforming sophisticated analytical and learned policies. Our method completes the pursuit-evasion task even when pursuers move at half of the evader's speed, whereas the highest-performing baseline fails at 80% of the evader's speed. Moreover, we examine the use of implicit signals in coordination through position-based social influence. We show that pursuers trained with our strategy exchange more than twice as much information (in bits) than baseline methods, indicating that our method has learned, and relies heavily on, the exchange of implicit signals.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com