Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Performance Evaluation of Classification Models for Household Income, Consumption and Expenditure Data Set (2106.11055v1)

Published 18 Jun 2021 in cs.LG and cs.AI

Abstract: Food security is more prominent on the policy agenda today than it has been in the past, thanks to recent food shortages at both the regional and global levels as well as renewed promises from major donor countries to combat chronic hunger. One field where machine learning can be used is in the classification of household food insecurity. In this study, we establish a robust methodology to categorize whether or not a household is being food secure and food insecure by machine learning algorithms. In this study, we have used ten machine learning algorithms to classify the food security status of the Household. Gradient Boosting (GB), Random Forest (RF), Extra Tree (ET), Bagging, K-Nearest Neighbor (KNN), Decision Tree (DT), Support Vector Machine (SVM), Logistic Regression (LR), Ada Boost (AB) and Naive Bayes were the classification algorithms used throughout this study (NB). Then, we perform classification tasks from developing data set for household food security status by gathering data from HICE survey data and validating it by Domain Experts. The performance of all classifiers has better results for all performance metrics. The performance of the Random Forest and Gradient Boosting models are outstanding with a testing accuracy of 0.9997 and the other classifier such as Bagging, Decision tree, Ada Boost, Extra tree, K-nearest neighbor, Logistic Regression, SVM and Naive Bayes are scored 0.9996, 0.09996, 0.9994, 0.95675, 0.9415, 0.8915, 0.7853 and 0.7595, respectively.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)