Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 422 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

DiffLoop: Tuning PID controllers by differentiating through the feedback loop (2106.10516v3)

Published 19 Jun 2021 in eess.SY, cs.LG, cs.SY, and math.OC

Abstract: Since most industrial control applications use PID controllers, PID tuning and anti-windup measures are significant problems. This paper investigates tuning the feedback gains of a PID controller via back-calculation and automatic differentiation tools. In particular, we episodically use a cost function to generate gradients and perform gradient descent to improve controller performance. We provide a theoretical framework for analyzing this non-convex optimization and establish a relationship between back-calculation and disturbance feedback policies. We include numerical experiments on linear systems with actuator saturation to show the efficacy of this approach.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube