Papers
Topics
Authors
Recent
2000 character limit reached

Neural Network Classifier as Mutual Information Evaluator (2106.10471v2)

Published 19 Jun 2021 in cs.LG and stat.ML

Abstract: Cross-entropy loss with softmax output is a standard choice to train neural network classifiers. We give a new view of neural network classifiers with softmax and cross-entropy as mutual information evaluators. We show that when the dataset is balanced, training a neural network with cross-entropy maximises the mutual information between inputs and labels through a variational form of mutual information. Thereby, we develop a new form of softmax that also converts a classifier to a mutual information evaluator when the dataset is imbalanced. Experimental results show that the new form leads to better classification accuracy, in particular for imbalanced datasets.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.