Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Coarse to Fine Two-Stage Approach to Robust Tensor Completion of Visual Data (2106.10422v4)

Published 19 Jun 2021 in cs.LG and stat.ML

Abstract: Tensor completion is the problem of estimating the missing values of high-order data from partially observed entries. Data corruption due to prevailing outliers poses major challenges to traditional tensor completion algorithms, which catalyzed the development of robust algorithms that alleviate the effect of outliers. However, existing robust methods largely presume that the corruption is sparse, which may not hold in practice. In this paper, we develop a two-stage robust tensor completion approach to deal with tensor completion of visual data with a large amount of gross corruption. A novel coarse-to-fine framework is proposed which uses a global coarse completion result to guide a local patch refinement process. To efficiently mitigate the effect of a large number of outliers on tensor recovery, we develop a new M-estimator-based robust tensor ring recovery method which can adaptively identify the outliers and alleviate their negative effect in the optimization. The experimental results demonstrate the superior performance of the proposed approach over state-of-the-art robust algorithms for tensor completion.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.