Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Systematic comparison of graph embedding methods in practical tasks (2106.10198v1)

Published 18 Jun 2021 in physics.soc-ph and cs.SI

Abstract: Network embedding techniques aim at representing structural properties of graphs in geometric space. Those representations are considered useful in downstream tasks such as link prediction and clustering. However, the number of graph embedding methods available on the market is large, and practitioners face the non-trivial choice of selecting the proper approach for a given application. The present work attempts to close this gap of knowledge through a systematic comparison of eleven different methods for graph embedding. We consider methods for embedding networks in the hyperbolic and Euclidean metric spaces, as well as non-metric community-based embedding methods. We apply these methods to embed more than one hundred real-world and synthetic networks. Three common downstream tasks -- mapping accuracy, greedy routing, and link prediction -- are considered to evaluate the quality of the various embedding methods. Our results show that some Euclidean embedding methods excel in greedy routing. As for link prediction, community-based and hyperbolic embedding methods yield overall performance superior than that of Euclidean-space-based approaches. We compare the running time for different methods and further analyze the impact of different network characteristics such as degree distribution, modularity, and clustering coefficients on the quality of the different embedding methods. We release our evaluation framework to provide a standardized benchmark for arbitrary embedding methods.

Citations (26)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.