Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 51 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Determining when a truncated generalised Reed-Solomon code is Hermitian self-orthogonal (2106.10180v3)

Published 18 Jun 2021 in cs.IT, math.CO, math.IT, and quant-ph

Abstract: We prove that there is a Hermitian self-orthogonal $k$-dimensional truncated generalised Reed-Solomon code of length $n \leqslant q2$ over ${\mathbb F}{q2}$ if and only if there is a polynomial $g \in {\mathbb F}{q2}$ of degree at most $(q-k)q-1$ such that $g+gq$ has $q2-n$ distinct zeros. This allows us to determine the smallest $n$ for which there is a Hermitian self-orthogonal $k$-dimensional truncated generalised Reed-Solomon code of length $n$ over ${\mathbb F}{q2}$, verifying a conjecture of Grassl and R\"otteler. We also provide examples of Hermitian self-orthogonal $k$-dimensional generalised Reed-Solomon codes of length $q2+1$ over ${\mathbb F}{q2}$, for $k=q-1$ and $q$ an odd power of two.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.