Papers
Topics
Authors
Recent
2000 character limit reached

Being a Bit Frequentist Improves Bayesian Neural Networks (2106.10065v3)

Published 18 Jun 2021 in cs.LG and stat.ML

Abstract: Despite their compelling theoretical properties, Bayesian neural networks (BNNs) tend to perform worse than frequentist methods in classification-based uncertainty quantification (UQ) tasks such as out-of-distribution (OOD) detection. In this paper, based on empirical findings in prior works, we hypothesize that this issue is because even recent Bayesian methods have never considered OOD data in their training processes, even though this "OOD training" technique is an integral part of state-of-the-art frequentist UQ methods. To validate this, we treat OOD data as a first-class citizen in BNN training by exploring four different ways of incorporating OOD data into Bayesian inference. We show in extensive experiments that OOD-trained BNNs are competitive to recent frequentist baselines. This work thus provides strong baselines for future work in Bayesian UQ.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com