Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Centrality Measures in Interval-Weighted Networks (2106.10016v1)

Published 18 Jun 2021 in cs.SI and physics.soc-ph

Abstract: Centrality measures are used in network science to evaluate the centrality of vertices or the position they occupy in a network. There are a large number of centrality measures according to some criterion. However, the generalizations of the most well-known centrality measures for weighted networks, degree centrality, closeness centrality, and betweenness centrality have solely assumed the edge weights to be constants. This paper proposes a methodology to generalize degree, closeness and betweenness centralities taking into account the variability of edge weights in the form of closed intervals (Interval-Weighted Networks -- IWN). We apply our centrality measures approach to two real-world IWN. The first is a commuter network in mainland Portugal, between the 23 NUTS 3 Regions. The second focuses on annual merchandise trade between 28 European countries, from 2003 to 2015.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.