Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Heuristic Stopping Rules For Technology-Assisted Review (2106.09871v1)

Published 18 Jun 2021 in cs.IR and cs.LG

Abstract: Technology-assisted review (TAR) refers to human-in-the-loop active learning workflows for finding relevant documents in large collections. These workflows often must meet a target for the proportion of relevant documents found (i.e. recall) while also holding down costs. A variety of heuristic stopping rules have been suggested for striking this tradeoff in particular settings, but none have been tested against a range of recall targets and tasks. We propose two new heuristic stopping rules, Quant and QuantCI based on model-based estimation techniques from survey research. We compare them against a range of proposed heuristics and find they are accurate at hitting a range of recall targets while substantially reducing review costs.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.