Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Error bounds for Lanczos-based matrix function approximation (2106.09806v2)

Published 17 Jun 2021 in math.NA and cs.NA

Abstract: We analyze the Lanczos method for matrix function approximation (Lanczos-FA), an iterative algorithm for computing $f(\mathbf{A}) \mathbf{b}$ when $\mathbf{A}$ is a Hermitian matrix and $\mathbf{b}$ is a given vector. Assuming that $f : \mathbb{C} \rightarrow \mathbb{C}$ is piecewise analytic, we give a framework, based on the Cauchy integral formula, which can be used to derive a priori and a posteriori error bounds for Lanczos-FA in terms of the error of Lanczos used to solve linear systems. Unlike many error bounds for Lanczos-FA, these bounds account for fine-grained properties of the spectrum of $\mathbf{A}$, such as clustered or isolated eigenvalues. Our results are derived assuming exact arithmetic, but we show that they are easily extended to finite precision computations using existing theory about the Lanczos algorithm in finite precision. We also provide generalized bounds for the Lanczos method used to approximate quadratic forms $\mathbf{b}\textsf{H} f(\mathbf{A}) \mathbf{b}$, and demonstrate the effectiveness of our bounds with numerical experiments.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.