Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

An Information Retrieval Approach to Building Datasets for Hate Speech Detection (2106.09775v3)

Published 17 Jun 2021 in cs.CL and cs.IR

Abstract: Building a benchmark dataset for hate speech detection presents various challenges. Firstly, because hate speech is relatively rare, random sampling of tweets to annotate is very inefficient in finding hate speech. To address this, prior datasets often include only tweets matching known "hate words". However, restricting data to a pre-defined vocabulary may exclude portions of the real-world phenomenon we seek to model. A second challenge is that definitions of hate speech tend to be highly varying and subjective. Annotators having diverse prior notions of hate speech may not only disagree with one another but also struggle to conform to specified labeling guidelines. Our key insight is that the rarity and subjectivity of hate speech are akin to that of relevance in information retrieval (IR). This connection suggests that well-established methodologies for creating IR test collections can be usefully applied to create better benchmark datasets for hate speech. To intelligently and efficiently select which tweets to annotate, we apply standard IR techniques of {\em pooling} and {\em active learning}. To improve both consistency and value of annotations, we apply {\em task decomposition} and {\em annotator rationale} techniques. We share a new benchmark dataset for hate speech detection on Twitter that provides broader coverage of hate than prior datasets. We also show a dramatic drop in accuracy of existing detection models when tested on these broader forms of hate. Annotator rationales we collect not only justify labeling decisions but also enable future work opportunities for dual-supervision and/or explanation generation in modeling. Further details of our approach can be found in the supplementary materials.

Citations (23)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.