Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

MetaBalance: High-Performance Neural Networks for Class-Imbalanced Data (2106.09643v1)

Published 17 Jun 2021 in cs.AI

Abstract: Class-imbalanced data, in which some classes contain far more samples than others, is ubiquitous in real-world applications. Standard techniques for handling class-imbalance usually work by training on a re-weighted loss or on re-balanced data. Unfortunately, training overparameterized neural networks on such objectives causes rapid memorization of minority class data. To avoid this trap, we harness meta-learning, which uses both an ''outer-loop'' and an ''inner-loop'' loss, each of which may be balanced using different strategies. We evaluate our method, MetaBalance, on image classification, credit-card fraud detection, loan default prediction, and facial recognition tasks with severely imbalanced data, and we find that MetaBalance outperforms a wide array of popular re-sampling strategies.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.