Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

AttDLNet: Attention-based DL Network for 3D LiDAR Place Recognition (2106.09637v4)

Published 17 Jun 2021 in cs.CV

Abstract: LiDAR-based place recognition is one of the key components of SLAM and global localization in autonomous vehicles and robotics applications. With the success of DL approaches in learning useful information from 3D LiDARs, place recognition has also benefited from this modality, which has led to higher re-localization and loop-closure detection performance, particularly, in environments with significant changing conditions. Despite the progress in this field, the extraction of proper and efficient descriptors from 3D LiDAR data that are invariant to changing conditions and orientation is still an unsolved challenge. To address this problem, this work proposes a novel 3D LiDAR-based deep learning network (named AttDLNet) that uses a range-based proxy representation for point clouds and an attention network with stacked attention layers to selectively focus on long-range context and inter-feature relationships. The proposed network is trained and validated on the KITTI dataset and an ablation study is presented to assess the novel attention network. Results show that adding attention to the network improves performance, leading to efficient loop closures, and outperforming an established 3D LiDAR-based place recognition approach. From the ablation study, results indicate that the middle encoder layers have the highest mean performance, while deeper layers are more robust to orientation change. The code is publicly available at https://github.com/Cybonic/AttDLNet

Citations (13)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub