Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Guided Nonlocal Means Estimation of Polarimetric Covariance for Canopy State Classification (2106.09550v1)

Published 17 Jun 2021 in eess.IV

Abstract: We have developed a nonlocal algorithm for estimating polarimetric synthetic aperture radar (PolSAR) covariance matrices on single-look complex (SLC) format resolution. The algorithm is inspired by recent work with guided nonlocal means (NLM) speckle filtering, where a co-registered optical image is used to aid the filtering. Based on patch-wise dissimilarities in the SAR and optical domains we set the weights used for the nonlocal average of the outer product of the lexicographic target vectors which form the estimate. By use of this method we show that the estimated covariance matrices preserve the local structure better than previous filtering methods and improve the separation of live from defoliated and dead forest. The detail preserving nature of the algorithm also means that it can be applicable in other settings where preserving the SLC format resolution is necessary.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.