Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Adversarial Visual Robustness by Causal Intervention (2106.09534v2)

Published 17 Jun 2021 in cs.CV and cs.LG

Abstract: Adversarial training is the de facto most promising defense against adversarial examples. Yet, its passive nature inevitably prevents it from being immune to unknown attackers. To achieve a proactive defense, we need a more fundamental understanding of adversarial examples, beyond the popular bounded threat model. In this paper, we provide a causal viewpoint of adversarial vulnerability: the cause is the spurious correlation ubiquitously existing in learning, i.e., the confounding effect, where attackers are precisely exploiting these effects. Therefore, a fundamental solution for adversarial robustness is by causal intervention. As these visual confounders are imperceptible in general, we propose to use the instrumental variable that achieves causal intervention without the need for confounder observation. We term our robust training method as Causal intervention by instrumental Variable (CiiV). It's a causal regularization that 1) augments the image with multiple retinotopic centers and 2) encourages the model to learn causal features, rather than local confounding patterns, by favoring features linearly responding to spatial interpolations. Extensive experiments on a wide spectrum of attackers and settings applied in CIFAR-10, CIFAR-100, and mini-ImageNet demonstrate that CiiV is robust to adaptive attacks, including the recent AutoAttack. Besides, as a general causal regularization, it can be easily plugged into other methods to further boost the robustness.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube