Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Backward Gradient Normalization in Deep Neural Networks (2106.09475v1)

Published 17 Jun 2021 in cs.LG

Abstract: We introduce a new technique for gradient normalization during neural network training. The gradients are rescaled during the backward pass using normalization layers introduced at certain points within the network architecture. These normalization nodes do not affect forward activity propagation, but modify backpropagation equations to permit a well-scaled gradient flow that reaches the deepest network layers without experimenting vanishing or explosion. Results on tests with very deep neural networks show that the new technique can do an effective control of the gradient norm, allowing the update of weights in the deepest layers and improving network accuracy on several experimental conditions.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube