Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Backward Gradient Normalization in Deep Neural Networks (2106.09475v1)

Published 17 Jun 2021 in cs.LG

Abstract: We introduce a new technique for gradient normalization during neural network training. The gradients are rescaled during the backward pass using normalization layers introduced at certain points within the network architecture. These normalization nodes do not affect forward activity propagation, but modify backpropagation equations to permit a well-scaled gradient flow that reaches the deepest network layers without experimenting vanishing or explosion. Results on tests with very deep neural networks show that the new technique can do an effective control of the gradient norm, allowing the update of weights in the deepest layers and improving network accuracy on several experimental conditions.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.