Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 57 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 453 tok/s Pro
Claude Sonnet 4.5 27 tok/s Pro
2000 character limit reached

Semi-Autoregressive Transformer for Image Captioning (2106.09436v2)

Published 17 Jun 2021 in cs.CV

Abstract: Current state-of-the-art image captioning models adopt autoregressive decoders, \ie they generate each word by conditioning on previously generated words, which leads to heavy latency during inference. To tackle this issue, non-autoregressive image captioning models have recently been proposed to significantly accelerate the speed of inference by generating all words in parallel. However, these non-autoregressive models inevitably suffer from large generation quality degradation since they remove words dependence excessively. To make a better trade-off between speed and quality, we introduce a semi-autoregressive model for image captioning~(dubbed as SATIC), which keeps the autoregressive property in global but generates words parallelly in local . Based on Transformer, there are only a few modifications needed to implement SATIC. Experimental results on the MSCOCO image captioning benchmark show that SATIC can achieve a good trade-off without bells and whistles. Code is available at {\color{magenta}\url{https://github.com/YuanEZhou/satic}}.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub