Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 126 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Differentially Private Hamiltonian Monte Carlo (2106.09376v1)

Published 17 Jun 2021 in stat.CO and cs.CR

Abstract: Markov chain Monte Carlo (MCMC) algorithms have long been the main workhorses of Bayesian inference. Among them, Hamiltonian Monte Carlo (HMC) has recently become very popular due to its efficiency resulting from effective use of the gradients of the target distribution. In privacy-preserving machine learning, differential privacy (DP) has become the gold standard in ensuring that the privacy of data subjects is not violated. Existing DP MCMC algorithms either use random-walk proposals, or do not use the Metropolis--Hastings (MH) acceptance test to ensure convergence without decreasing their step size to zero. We present a DP variant of HMC using the MH acceptance test that builds on a recently proposed DP MCMC algorithm called the penalty algorithm, and adds noise to the gradient evaluations of HMC. We prove that the resulting algorithm converges to the correct distribution, and is ergodic. We compare DP-HMC with the existing penalty, DP-SGLD and DP-SGNHT algorithms, and find that DP-HMC has better or equal performance than the penalty algorithm, and performs more consistently than DP-SGLD or DP-SGNHT.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.